What can we learn from PISA?

PISA 2012 results

Launch of the 2018 PISA in Ukraine

Yuri Belfali

Head, Early Childhood and Schools Division OECD

International comparisons matter:

- To understand where you stand, how others are performing, and what strong performers are doing:
- By sailing to different countries...

and looking at the world through...
- Over half a million students...
- representing 28 million 15-year-olds in 65 countries/economies
... took an internationally agreed 2 -hour test...
- Goes beyond testing whether students can reproduce what they were taught...
... to assess students' capacity to extrapolate from what they know and creatively apply their knowledge in novel situations
- Mathematics, reading, science, problem-solving, financial literacy
- Total of 390 minutes of assessment material
... and responded to questions on...
- their personal background, their schools and their engagement with learning and school
- Parents, principals and system leaders provided data on...
- school policies, practices, resources and institutional factors that help explain performance differences .

PISA 2012 in brief

- Key principles
- 'Crowd sourcing' and collaboration
- PISA draws together leading expertise and institutions from participating countries to develop instruments and methodologies...
... guided by governments on the basis of shared policy interests
- Cross-national relevance and transferability of policy experiences
- Emphasis on validity across cultures, languages and systems
- Frameworks built on well-structured conceptual understanding of academic disciplines and contextual factors
- Triangulation across different stakeholder perspectives
- Systematic integration of insights from students, parents, school principals and system-leaders
- Advanced methods with different grain sizes
- A range of methods to adequately measure constructs with different grain sizes to serve different decision-making needs
- Productive feedback to fuel improvement at every level of the system .

PISA 2012 Sample Question 1

Climbing Mount Fuji

Mount Fuji is a famous dormant volcano in Japan.

Mount Fuji is only open to the public for climbing from 1 July to 27 August each year. About 200000 people climb Mount Fuji during this time.

- On average, about how many people climb Mount Fuji each day?

A. 340 (answer code: pisa1a)
B. 710 (answer code: pisa1b)
C. 3400 (answer code: pisa1c)
D. 7100 (answer code: pisa1d)
E. 7400 (answer code: pisa1e)

This item belongs to the quantity category. The notion of quantity may be the most pervasive and essential mathematical aspect of engaging with, and functioning in, our world. It incorporates the quantification of attributes of objects, relationships, situations and entities in the world, understanding various representations of those quantifications, and judging interpretations and arguments based on quantity.

SCORING:

Description:
Identify an average daily rate given a total number and a specific time period (dates provided)
Mathematical cont Quantity
ent area:
Context: Societal
Process: Formulate

PISA 2012 Sample Question 2

Revolving Door

A revolving door includes three wings which rotate within a circular-shaped space. The inside diameter of this space is 2 metres (200 centimetres). The three door wings divide the space into three equal sectors.

The plan below shows the door wings in three different positions viewed from the top.

The two door openings (the dotted arcs in the diagram) are the same size. If these openings are too wide the revolving wings cannot provide a sealed space and air could then flow freely between the entrance and the exit, causing unwanted heat loss or gain. This is shown in the diagram opposite.

What is the maximum arc length in centimetres (cm) that each door opening can have, so that air never flows freely between the entrance and the exit?
\qquad

Possible air flow in this position.

- Figure l.2.40 "

BRUSHING YOUR TEETH

Do our teeth become cleaner and cleaner the longer and harder we brush them?
British researchers say no. They have actually tried out many different alternatives, and ended up with the perfect way to brush your teeth. A two minute brush, without brushing too hard, gives the best result. If you brush hard, you harm your tooth enamel and your gums without loosening food remnants or plaque.

Bente Hansen, an expert on tooth brushing, says that it is a good idea to hold the toothbrush the way you hold a pen. "Start in one corner and brush your way along the whole row," she says. "Don't forget your tongue either! It can actually contain loads of bacteria that may cause bad breath."

"Brushing your Teeth" is an article from a Norwegian magazine.
Use "Brushing Your Teeth" above to answer the questions that follow.

What is this article about?

A. The best way to brush your teeth.

B. The best kind of toothbrush to use.
C. The importance of good teeth.
D. The way different people brush their teeth.

Points	Level
	Level 6
698	
	Level 5
626	
	Level 4
553	
	Level 3
480	
	Level 2
407	
	Level 1a
335	
	Level 1b
262	
	Below Level 1b

Difficulty: 358 (Level 1A item)
93.7\% of students across OE

CD can perform tasks at leas t at this level

10 PISA 2012 Sample Question 4

- Figure l.2.44 " MISER

THE MISER AND HIS GOLD

A fable by Aesop
A miser sold all that he had and bought a lump of gold, which he buried in a hole in the ground by the side of an old wall. He went to look at it daily. One of his workmen observed the miser's frequent visits to the spot and decided to watch his movements. The workman soon discovered the secret of the hidden treasure, and digging down, came to the lump of gold, and stole it. The miser, on his next visit, found the hole empty and began to tear his hair and to make loud lamentations. A neighbour, seeing him overcome with grief and learning the cause, said, "Pray do not grieve so; but go and take a stone, and place it in the hole, and fancy that the gold is still lying there. It will do you quite the same service; for when the gold was there, you had it not, as you did not make the slightest use of it."

11 PISA 2012 Sample Question 4

Here is part of a conversation between two people who read "The Miser and his Gold".

What could Speaker 2 say to support his point of view?
57.0% of students a cross OECD can per form tasks at least at this level

Points	Level
Level 6	

What do 15 -year-olds know...

High mathematics performance

Mean score 580	... Shanghai-China performs above this line (613)	
		Singapore
560	Chinese Taipei	Hong Kong-China
550 Korea		
540		Macao-China Japan Liechtenstein
530		Switzerland
520	Popand	Netherlands Estonia Finland Canada
510	ceman	Viet Nam
500	Austria Slovenia	Australia
	New Zealand Denmary	United Kingdom
490	Czech Republic France	Weland ${ }^{\text {Norway }}$ -
480	Slovak Republic United States Hungary	taly Lithuania Sweden
470	Israel	Croatia
460		
450	Greece	Serbia Turkey
	Romania	
440		Bulgaria
430		
		Thailand
420	Chile	Malaysia
410		Mexico
	Low mathema	cs performance

Australia
Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Strong socio-economic impact on student performance
Luxembourg
Mexico
Netherlanc:łovak Rep.
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
Chile
UK
US
2012

KoreaJapan

Finland
Socially equitable distribution of learning opportunities

Australia
Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy

Who are doing better?

Of the 65 countries,

45 improved in at least one subject

Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Austria
Belgium
Canada
Chile
Czech Rep.
Denmark
Estonia
Finland
France
Germany
Greece
Hungary
Iceland
Ireland
Israel
Italy
Japan
Korea
Luxembourg
Mexico
Netherlands
New Zealand
Norway
Poland
Portugal
Slovak Rep.
Slovenia
Spain
Sweden
Switzerland
Turkey
UK
US

Mathematics, reading and science

Mathematics and reading

Mathematics and science

Israel, Poland, Portugal, Turkey, Brazil, Dubai (UAAㄷ), Hong Kong-China, Macao-China, Qatar, Singapore, Tunisia

Chile, Germany, Mexico, Albania, Montenegro, Serbia, Shanghai-China

Italy, Kazakhstan Romania

Japan, Korea, Latvia, Thailand

Greece, Bulgaria Malaysia, United Aràt Eriurates (ex. Dubai)

Estonia. Hungary. Luxembourg, Switzerland, Colombia, Indonesia, Liechtenstein, Peru, Russian Federation, Chinese Taipei

Science only
g

Excellence through equity

Educational resources are more problematic in disadvantaged schools, also in public schools in most countries

Difference between socio-economically disadvantaged and socio-economically advantaged schools

Percentage of top performers

60

Low performance is an issues for all

Percentage of low performers (Level 1 or below) in Mathematics
\square Below level $1 \quad$ Level 1

More boys than girls are all-round low-achievers

Consequences for education systems

Source: Figure 1.10.

Grade repetition is negatively related to equity

Adjusted by per capita GDP
 Russian Fed. Croatia Montenegro
 sweden

UAE Australia Latvia Turkey Switzerland

Hong Kong-China
Indonesia
Mexico
Italy

Tunisia

Argentina

16

18

Variability in student mathematics performance between and within schools

- Observed performance difference

100
After accounting for-students' and schools' socio-economic-status

Spending per student from the age of 6 to 15 and mathematics performance in PISA 2012

Average spending per student from the age of 6 to 15 (USD, PPPs)

Countries with better performance in mathematics tend

 to allocate educational resources more equitablyAdjusted by per capita GDP

650
Shanghai-China

Few countries attract the most talented teachers to the most challenging classrooms

-0.5

Difference in mathematics performance, by attendance at pre-primary school

- before accounting for students' socio-economic status
-after accounting for students' socio-economic status

Girls are generally less confident in their ability in mathematics than boys

Boys are more likely than girls to get "hands-on" experience in the working world (OECD countrief

Students and teachers using computers during mathematics lessons

Percentage of students who reported that a computer was used in mathematics lessons in the month prior to the PISA test

Common computer leisure activities outside of school, by students' socio-economic status

Chat on line
OECD average

Prevalence of

rehearsal, routine exercises, drill and practice and/or repetition

Prevalence of elaboration reasoning, deep learning, intrinsic motivation, critical thinking, creativity, non-routine problems

Teaching strategies and learning outcomes
 performance and equity in PISA:

Attract

- Attract the best students to the teaching profession (Examples: Brazil, Korea, Israel, United Kingdom)
- Create incentives to encourage experienced teachers to work in disadvantaged schools (Examples: Brazil, Estonia, Shanghai)

Train

- Provide quality training that combines acquiring knowledge and skills (Examples: Finland, Japan, Turkey)
- Prepare teachers to address specific problems of students, assess and use appropriate remedial methods (Examples: Germany, Poland, Canada)

Accompany

- Provide mentoring programs for young teachers (Examples: Germany, Singapore)
- Give young teachers the opportunity early in their career to return to university and improve their skills (Examples: Finland, Germany)

Retain

- Develop continuous professional development, which is as important, if not more than initial training (Examples: Brazil, Canada, Mexico, Singapore)
- Provide career advancement opportunities (Examples: Quebec, Portugal)

What it all means

Some students learn at high levels
All students need to learn at high levels

Curriculum, instruction and assessment
Routine cognitive skills, rote learning
Learning to learn, complex ways of thinking, ways of working

Teacher quality
Few years more than secondary
High-level professional knowledge workers

Work organisation
'Tayloristic', hierarchical
Flat, collegial

Thank you very much

Yuri.Belfali@oecd.org

PISA and PISA for

 Development:
www.pisa.oecd.org

- All national and international publications
- The complete micro-level database
- Documents and Presentations of PISA for Development

